企业都在努力获取和解读不同分析系统的数据,而每个系统又负责不同的数据和处理类型。企业都在试图提升数据分析的广度和深度,以便满足业务运营的需求。但是,他们的挑战在于,如何将各种全新的分析引擎、文件系统、存储技术、程序设计语言和数据类型完美地整合到统一、互联、互补的分析架构中。而由于各种不同的原因,过去企业在这方面的尝试都不成功。从大数据获取价值,企业必须创建一个架构来协调并行数据库的分析处理,而不是联合所有的服务器。
“Teradata QueryGrid是最灵活的解决方案,配备实现所有功能的创新型软件。得以轻松完成跨数据库分析处理”,Teradata天睿公司实验室(Teradata Labs)总裁 Scott Gnau 表示。“用户选择相应分析引擎和文件系统后,Teradata软件只要执行一条SQL查询,就能无缝整合不同系统的分析处理能力,无需移动数据。此外,Teradata还支持在单一负载中使用多个文件系统和分析引擎。”
Hortonworks公司首席技术官Ari Zilka表示:“Teradata天睿公司开创性地将Hadoop以及Hcatalog与Aster SQL-H相结合,让客户能够访问Hadoop中储存的大量数据,直接运行高级分析功能。如今,他们正进行更深层次的研发,将数据处理能力部署在Hadoop之中,运用Hortonwork公司Singer Intiative带来的Hive性能提升优势,以前所未有的规模和速度提供分析结果。”
Teradata QueryGrid打破了业界传统,提供了无缝的自助式服务,用户只需在单一Teradata 数据库(Teradata Database)或者Teradata Aster 数据库查询,就能访问和分析各个系统的数据。Teradata QueryGrid采用分析引擎和文件系统,使用户专注于数据访问和分析,无需专用工具或IT人员介入。通过在数据的原有存储位置进行处理,最大限度避免了数据移动和复制。
Teradata Database 15数据库配以QueryGrid的性能,能够在开源Hadoop平台、Aster数据库及其他数据库中,为用户提供双向数据迁移及下推(pushdown)处理。查询可以从Teradata 数据库发起,在Hadoop、Aster数据库及其他数据库环境中获取、筛选和返还数据子集,并在Teradata数据库中进行再加工,通过这种分析能力整合Teradata 数据库与Hadoop数据库中的数据。
Teradata统一数据构架(Teradata Unified Data Architecture)整合Teradata 数据库、Teradata Aster大数据探索平台和Hadoop技术,让Teradata QueryGrid能够拓展和丰富Teradata及Aster的查询,从而为用户提供可靠的洞察力。
使用Teradata数据库及Teradata Aster大数据探索平台的优势,用户便可从Teradata QueryGrid双向数据迁移和下推分析处理中获益良多。Teradata天睿公司的愿景是创造出更成熟的大数据分析方案,连接分析引擎与文件系统,将用户的数据处理能力扩展至整个公司。
推荐经销商